The Community for Technology Leaders
2018 IEEE Symposium on Security and Privacy (SP) (2018)
San Francisco, CA, US
May 21, 2018 to May 23, 2018
ISSN: 2375-1207
ISBN: 978-1-5386-4353-2
pp: 578-594
Tianhao Wang , Purdue University
Ninghui Li , Purdue University
Somesh Jha , University of Wisconsin-Madison
ABSTRACT
The notion of Local Differential Privacy (LDP) enables users to respond to sensitive questions while preserving their privacy. The basic LDP frequent oracle (FO) protocol enables an aggregator to estimate the frequency of any value. But when each user has a set of values, one needs an additional padding and sampling step to find the frequent values and estimate their frequencies. In this paper, we formally define such padding and sample based frequency oracles (PSFO). We further identify the privacy amplification property in PSFO. As a result, we propose SVIM, a protocol for finding frequent items in the set-valued LDP setting. Experiments show that under the same privacy guarantee and computational cost, SVIM significantly improves over existing methods. With SVIM to find frequent items, we propose SVSM to effectively find frequent itemsets, which to our knowledge has not been done before in the LDP setting.
INDEX TERMS
local-differential-privacy, frequent-itemset-mining
CITATION

T. Wang, N. Li and S. Jha, "Locally Differentially Private Frequent Itemset Mining," 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US, , pp. 578-594.
doi:10.1109/SP.2018.00035
86 ms
(Ver 3.3 (11022016))