Neighborhood computer stores—The answer to microcomputer marketing

by PAUL TERRELL
Byte Incorporated
Sunnyvale, California

ABSTRACT

Fifteen years ago, only an eccentric individual would consider assembling a computer at home. The technology simply would not permit it. Today, the streams of technology and retailing have met. Where the tributaries come together we have a unique and growing concept, the neighborhood computer store. As represented by the Byte Shops (now numbering 40 world-wide), this new concept brings technology and qualified persons to interpret that technology into a convenient and informal format that anyone can understand and participate in. The result can only be a greater demand for the ever more affordable computer technology of today, and a more personal and powerful interest in computer operation and applications not only in the home, but in small businesses. The neighborhood computer store may soon mature to become the only reasonable retail outlet for manufacturers of microcomputers and peripheral products.

INTRODUCTION

Fifteen years ago, if someone had said he was putting a computer together at home, we would consider him owner of an overactive imagination. We might have thought he’d been watching too much Saturday morning TV with his kids—that the Jetsons and Star Trek were taking over his mind. Even if a person had wanted such a do-it-yourself project, he would need to be independently wealthy, be able to control his air to a clean and perfect 68 degrees, absorb an astronomical power bill, and sacrifice an area the size of a large living room to the venture. Even with the above, there would be no way to make proper use of all the bulky equipment to justify even an eccentric millionaire’s time and money. In other words, it would have been virtually impossible.

As the years rapidly passed, and compounding technological advances ensued, computer hardware became less bulky and began to sweep a complete spectrum of applications. Some systems grew in complexity, becoming extremely sophisticated with storage and manipulative power to computerize a nation of tax records. Other developments went the opposite direction, becoming smaller and considerably less complicated.

One event, however, seeded the idea of putting computer power in the hands of someone other than trained technicians. With the advent of computer assisted instruction and the concept of timesharing, the mystique was finally broken. Sharing the computer among many users (timesharing) made a large central computer (mainframe) seem to slow down and patiently wait for its human user to type in or respond to information. The beauty was that the incredibly high speed machines could service multiple users without the human element feeling neglected. Timesharing made better and more economical use of large machines, but more importantly, it satisfied the psychological need for a personal rapport between man and machine. We no longer feared the beast and could welcome it as another tool for mankind instead of the awesome BIG BROTHER.

The trend toward miniaturization and simplification was greatly accelerated by the space program, which created a definable need for smaller computers. So we began to speed up technology, miniaturize and simplify. Computer technology was allocated enough funds to enable speedy developments to meet the space age needs.

Then, in the early 1970’s, the semiconductor industry came to meet the computer people more than halfway. Intel Corporation designed a single chip—the 8008—an 8-bit microprocessor which unleashed a whole new era by solving the money and size problem that had previously stood in everyone’s way. That leap forward in 1972 paved the way for putting computing power in the hands of anyone who wanted to give it a try. Through the development of comparatively less expensive minicomputers, microprocessors and peripheral equipment, the results of that rapid progress is what we’re involved in today.

During this same period, another phenomenon was taking place. With apparently no organized effort, a great number of technical and professional people from within the electronics industry were becoming increasingly interested in the new small computers. On the side, at work, they were inventing games like space war and computer chess, compliments of their employers, justifying such antics as “demonstrator programs to demonstrate versatility and design capability. . . ” But, at the same time, they were having fun...
on a minicomputer and CRT (cathode ray tube). More than a few programmers attempted to computerize their personal tax records at considerable expense to their resident universities. It wasn't any wonder that a desire for a toy of one's own was starting to gel. About this same time, electronic kits and so-called "computerized games" were sweeping the consumer market, but they lacked room for individual creativity and interesting application on the part of the user.

FIRST MICROCOMPUTER KIT

When the first microcomputer kit, the Altair 8800, was introduced in December of 1974, the stage was set for the hobbyist and personal computer marketplace. Even then we in the computer marketing business were not completely aware of the incredibly perfect timing that was about to combine with the ideal product and combust. A ripe and hungry public answered the microcomputer kit advertisements, with COD's and money orders—sight unseen. As is too often the case, many manufacturers had stepped into this new market, but they weren't ready for the onslaught and the filling of mail orders was delayed. That computer-starved public was left with fingers crossed, looking at their deflated bank balance, hoping for delivery of their new "toys."

In 1975, I was a sales representative for MITS, then the leading manufacturer of computer kits. My partner and I were responding to the unusually high number of inquiries from the slow leads, and we found that our customer profile had dramatically changed. Payment was often by personal check or cash—not company P.O. These interested and frustrated hobbyists were trying to deal directly instead of by mail, to try to ensure prompt delivery of their kits. We realized our customers were buying kits for their personal use. To ease the guilt feeling of taking money without delivering the product, we ordered ahead and stockpiled a supply. When word got out that we not only had those previous kits in stock, but some software packages along with them . . . well, we were never again to knock twice and put our foot into the door for a normal sales call.

SALESMANS' NIGHTMARE

It would seem like a salesman's dream to have the customers flocking to you—but not quite. Our office literally turned into a mob scene as people browsed through the literature shelves waiting to use the demo machine. A month's coffee supply disappeared in four days. And the last straw was the sight of a Modesto mother and her 14-year-old son at our door at opening time with a broken computer. They had been waiting since 7:30 a.m.

It was utter chaos and our little office setting was becoming absurd. Since we were doing such a great business in obscurity, we wondered what would happen if we opened up a retail shop and hung out a sign. Byte means the measure of a unit of information, and since we were knee deep in the world of computer buzz words, we settled on the name "Byte Shop." We considered it eyecatching and rather significant. Except for the few people who think we're a sandwich stand, the name has done well for us. For those uneducated others, we ought to serve snacks. Our first retail store opened on December 8, 1975, in Mountain View, California, in the heart of "Silicon Valley" near San Jose. (Silicon Valley is the appropriately nicknamed area that houses one of the largest concentrations of electronic companies in the world. It got the name from silicon, the basic substance for producing semiconductors.)

Aside from creating a stir with the local press, we even managed a modest profit in our first month of operation. We also discovered we had the equivalent of a trade show 365 days a year for our principal's products. This seemed like a natural way to overcome the increasing cost of selling to the end-user, and our customers were intrigued with the thought of visiting a computer store. After three months of doubling our gross sales, we were "discovered," and on March 2, 1976, opened Byte Shop #2.

TIME FOR GOALS

As we appeared to be growing and making a profit, it became time to set up some kind of basic corporate structure and map out our goals. We settled on the name Byte Incorporated as the central distributorship, doing all the direct wholesale buying from manufacturers and stocking the Byte Shops with preferred product lines as retail outlets. Our goal was simple and modest—tomorrow, the world.

The structure and tie-in between Byte Incorporated and the Byte Shops is simple. Byte Incorporated buys in large quantity directly from the manufacturers at an OEM (original equipment manufacturer) discount. We also manufacture some products ourselves, such as the Byt-8 kit. Other products are designed to our specifications and carry the Byte label, such as the Byte-File. We purchase all the inventory necessary to completely stock all Byte Shops at wholesale discount prices, buying in volume . . . a discount for which each individual store could not qualify. Byte Incorporated then sells to the stores and charges a seven percent handling fee. We can stock a new store with $28,000 worth of merchandise, and the cost to the store owner is only about $20,000. Average inventory turnover for one shop is nine times per year. The Byte Shop dealership agreement limits the loss to the shop owner through a merchandise buy-back agreement. I might add that this "bail out" provision has never been exercised, but we feel it's an excellent safeguard. The formula seems to be working, because we went from 0 to 40 stores in the first year and should have approximately 100 by July of 1977—all thriving and many expanding.

WHO'S RUNNING THE STORE

As with anything new, exciting and so potentially profitable, everyone wants to get in on the act. My desk is piled high with requests from all over the U.S. and a dozen
foreign countries to open stores. As I have indicated, each store is owned and operated by the individual business man. Byte Incorporated acts as his distributor, offering him economical advantages, support assistance, cooperative advertising and a proven successful format. Even though he carries our name, he is an independent dealer, much like the manner in which some national service station dealerships are set up. Since the format is a proven winner, we have a definite reputation we wish to maintain, so it is to our mutual advantage to screen new shops and their prospective owners and management carefully to assure that each Byte Shop is successful.

The preferred owner fits the following simple profile: He should show a keen business sense and an appreciation of the consumer computer marketplace. It is not necessary that the owner possess technical computer knowledge as long as he wisely chooses such expertise for his management. The best manager is someone who has both technical skill and an ability to work well with customers. The ideal person to act as guiding force in a Byte Shop is a customer engineer (CE) from the computer industry. A customer engineer services, advises and often sells to his company's customers and is the real backbone of a sound sales and service program. Successful customer engineers usually understand and enjoy the technical side of computers, but not to the exclusion of the personal customer contact. It is this combination that makes him valuable as a potential store manager.

The ideal potential manager works as a customer engineer for a big conglomerate. He is frustrated having to be under the control of the large company and harbors a strong desire to be a proprietor. He enjoys working on computers and possesses considerable technical skill and creative ability. Most important of all, he enjoys working with people and likes helping them learn and develop their creative interests.

By separating the profiles of owners and managers, I am not saying that the two cannot be combined. If someone has the unusual combination of abilities—technical skill, personality and business sense, and can establish a firm financial base, then it could probably work well. More than likely the customer engineer profile could be met, and with bank financing and a good business advisor, could establish a workable and successful business setting. Byte Incorporated needs to be assured that all the bases are covered before it OK's use of its name on a new door. Our success rate is still 100 percent and we intend to keep it that way.

If all the personnel criteria are met, then we get down to the financial details and choice of location. A Byte Shop can be opened for approximately $30,000, depending on location. This includes the $20,000 worth of initial inventory purchased from Byte Incorporated. The remaining $10,000 is for prepaid store rent, furniture, leasehold improvements, sign, salaries, phone, operating capital, and the one million little extras necessary to open. Nobody can guarantee short or easy hours, but we can tell you that every shop owner and manager so far has enjoyed it immensely and profited considerably, both in dollar return and personal growth.

**MARKET STRATEGY**

Each Byte Shop has a common goal—to provide a service to the public and to make money for its owners. With the opening of each store, we see more and more retail professionalism. The physical format that we advocate, and the one that is proving especially successful, is not like our original start-up stores, which were rather bleak. Future Byte Shops will be warm, comfortable, and carpeted with attractive comprehensive displays. Each store will have three sections: one, a sales display of small peripheral products such as boards, cards or interfaces; the second, a section for hardware display; and the third section for books and periodicals. Each store has, and always should have, both a demonstration area with working sample machines, and a work room. These two features serve very important functions. They permit the customer and store personnel to interact while having the product in hand. If the customer needs to learn the basics, the demonstration room can answer many questions.

The work room is where technical problems are tackled. A customer and store technician can lock brain power and soldering iron to repair a faulty CPU (central processing unit) board or test a new I/O (input/output) device. The physical set-up described above enhances the philosophy that we feel is at the heart of the Byte Shop movement—service.

**THE IMPACT OF EDUCATION**

Education is probably the most significant service we can offer, since the man on the street is basically unaware of the microcomputer revolution taking place all around him. His curiosity is stimulated when he sees a sign describing the Byte Shop as an "affordable computer store." Until now computers were for business and institutions and were anything but affordable. When he walks into the store, he finds a color television, much like his own, with a computer attached, playing color graphic programs loaded from an audio cassette tape recorder. The scene looks very much like his home entertainment set-up in the family room. An audio amplifier and speaker come into view as the sound of digital music fills the air. Slowly the idea begins to form that computers may be meant for him, too. The education process is about to begin. First, he purchases books and magazines and possibly enrolls in a Byte Shop-sponsored weekly course on the introduction to microcomputers. The computer bug has bitten and "computeritis" quickly sets in. The victim's old life style is now of short duration.

The most significant service is the "handholding" that begins even before the unit is purchased. "Which computer should I buy for my application?" is the most asked question, and the answer has to be right for the store owner's future peace of mind. A computer that can't be expandable to meet the needs of someone with visions of grandeur will only create problems at a later date and the conflict will be face to face, over the counter, Byte Shop manager to customer, and not through the mails.
When the purchase is consummated, the hand-holding becomes more technical. Purchasing of kits may require numerous "helpful hints on assembly, whereas buyers of assembled units need less attention—providing the unit works well. Whichever the case, it is always the responsibility of the shopkeeper to make sure the machine works. A few statistics at this point may be of interest. Of the thousands of kits sold to date by the Byte Shop, no one has ever had a bad CPU chip, and not more than 10 percent of the purchasers have come back to the store for assistance in assembly or troubleshooting. This indicates either quality products or that our customers to date have been a tough breed of cat. Needless to say, we stock only products which our stores can back up with confidence. A solid manufacturer's guarantee helps.

Service after the sale is an extension of that initial handholding during the selection and assembly process and is every bit as important to both customer and shop. It is during this time that the customer concerns himself with his personal application, and is more likely to require advice and additional equipment. Our credibility is tremendously important. If our advice leads to expanded sales, then terrific, but we aren't there just to push equipment—we're supporting a whole idea and stake our reputation on every bit of advice. With this philosophy, we can't afford to lead a customer down a rosy buying spree of non-necessities. Fortunately, we are becoming noted for our credibility.

For that new prospect we lured in off the street, what started out to be a modest investment in home entertainment is taking shape to compete with the computer center at work, at a fraction of the cost. The price of a microcomputer, which I will define as CPU card, power supply and chassis, ranges from $350, and is expanded with memory cards and I/O's from $100. When asked to comment on the computers we sell in the Byte Shop Computer Stores, my answer is: "higher level languages playing on hardware for less than $1000." This implies eight thousand words of memory and an input/output interface along with the computer. The average home computer is a $1,500 investment—easily cost comparable to investments in home stereo systems and numerous other hobby fields.

THREE ASPECTS DEFINED

There are three definitely aspects to any computer exercise—hardware, software and applications—all of which should be addressed. Many enthusiasts concentrate on just one—unfortunately neglecting the others. If total three-phase investment is impossible, then one can cover the bases by substituting some packaged products. But by becoming involved in all three, one learns the secret of how to indulge in a full and enjoyable dose of computer mania. First comes the hardware aspect, which we have already discussed. If a customer's talent doesn't bend in that direction and he can afford ready-made products, the customer can get right down to phase two—software. The electrical genius that makes his machinery almost from scratch from IC's, wires and boards can pleasantly forestall this step for as long as his tinkering continues. But when everything is up and running it comes down to actually doing something with the creation.

Software work turns many beginners into creative fanatics. Given this type a book on BASIC, coding sheets, a keyboard, and a printer or video display and he's off and running. Just throw him a sandwich and some new pencils periodically, let him out for airing on Sundays, and you have a happy new convert. For those less creatively bent, packaged software is now available, on cassette or in books. The software aspect has been long underplayed. No matter how great the hardware, it is useless without good software.

Fundamentally, the whole discipline of software is the problem. There exists a lack of real feel for how to write good software correctly. The tremendously fast-paced progress in hardware made accompanying software a sorry step-child. Good inexpensive software packages will take time. Unfortunately our market is hungry for it now. One of the solutions is for our customers to self-educate themselves in BASIC to enable "do-it-yourself programming." Byte is involved in providing comprehensive classes in microprocessor programming and feels such a step will not only help solve the problem, but further provide more independent creativity for our customers.

The fact that packaged software can be easily duplicated for distribution dictates that it begins to be offered cheaply for mass distribution. If a package is inexpensive, the user will pay the price in order to get documentation and to be on mailing lists for updates. At the same time his conscience will remain clear.

The final aspect is application. Everyone wants to build a better mousetrap and now the chance has come. The applications are as practical or as futuristic as the mind can conceive. Man's creativity is the only limitation, and that is what is most stimulating about the whole field of personal computing. Typical applications run the gamut: for home use, menu planning and shopping, household budget and income taxes, homework and computer assisted instruction. Anything that can be controlled electrically can be run by a computer. So most appliances can become programmable and automated if you so desire. For recreational enthusiasts there are a myriad of games in existence with an equal number for one to self-invent—music synthesizers, computer-run ham radio stations, model airplane and electric train control are a few examples. The Star-Trek Game is tremendously popular, and that can be just a beginning. All those games you play for 25¢ a go can be put on a private microprocessor for the whole family to enjoy.

Most of those unique applications make their way back to our Byte Shop counters. Ten percent of the people who come into the store are there to sell their creations back to us, not to buy. They represent themselves, and what they have to offer is a better widget, designed in their back bedroom or garage. And, be it hardware or software, until the day of the retail computer store, there existed no outlet for that creativity. Two hours worth of programming effort on our store demonstration computer netted a Northern
California programmer over 100 sales of his program to date, at $15 a copy.

The other 90 percent of our customers come from all walks of life: a housewife buying a Christmas present for her husband in real estate; a college student; a programmer who always wanted to own his own machine; the guy who has everything; and the girl who is giving up boys for toys. Our present customers are often associated with the electronics industry in some fashion. With CB radio making everyone more familiar with electronics, the trend is toward much more wide-spread popularity.

Computers in the home will unleash talent and creativity of the magnitude required to support the intelligence revolution, and the neighborhood computer store, acting as liaison between the electronic manufacturer and the consumer, will be the focal point of activity. Computer clubs are forming, with store owners in the center of club activity—a vested interest since the growth of such clubs is significant to their profit or loss. Introductory courses sponsored by the stores will supplement community education, primarily because there will be more computers in the home than in the schools. The day of the home computer is now.

BYTE INTO THE FUTURE

The most exciting future for Byte Shop owners is in the field of business. Anyone in a small business could use a low cost microprocessor-based computer system. Stock market simulators, inventory control, updating of mailing lists, personalized form letters, bill collecting, information retrieval and computer assisted design. Every doctor and dentist could use one for patient records, billing, and insurance forms. Lawyers, judges and researchers could save hundreds of hours by computerizing access to information. The hobby or personal computing marketplace is fun, but from a potential sales viewpoint, the small business applications are really exciting.

This brings us to taking a realistic look at the future of the neighborhood computer store. Right now it would appear, on the surface, as though computer stores might remain the place for hobbyists to gather and kibitz, buy a goodie or two, shoot the breeze, or get a problem unraveled. That will, of course, continue to be one of their important functions. We all love to sit around the old IC cracker barrel and swap CPU stories or boast the latest application tale. But the Byte Shops will mature to be much more than that.

We can all recall when calculators were bought directly from manufacturers, then slowly became available in retail outlets at such exorbitant prices that only wizard engineers and mathematicians could afford them. Technology befriended the consumer and reduced the price such that you can now pick one up at the drugstore and give it as a stocking stuffer to a little kid.

No one today would consider buying a basic calculator directly from the manufacturer, mainly because there comes a time in marketing when it simply isn’t worth a company’s time to deal directly with a consumer. And therein lies the future marketplace for the neighborhood computer store. It will be the only reasonable retail outlet for manufacturers of microcomputers and peripheral products. The only major competition tomorrow may be similar to that which stereo equipment stores experience—department stores carrying computers. But just as there is more consumer safety in dealing with specialty stores for stereo sound equipment, the consumers will probably prefer the expertise they will get only from neighborhood computer stores.

The challenge is that the computer stores like the Byte Shops will have to be very good at what they do. A hobbyist may be forgiving if his toy doesn’t work quite right for a few weeks, but the computer that becomes the backbone of a small business must stay functioning or the small businessman starts to see dollars fly out his window. Good service is the key.

Service has been nearly as big a problem in the computer field as good economical software. The problem can be solved by competence. That’s why we’re so particular about who runs a Byte Shop. We know that companies are full of good competent technicians who can keep a small business system whirling and churning out data with one hand tied behind their back. Such people have moved mainframe mountains—a little microprocessor or terminal is a “piece of cake.” The 10 years he’s been training and tinkering will all pay off as he acts as diagnostician, friend and A-I repair mechanic to his clientele. And if he runs into problems he can’t solve, he can hire his old buddy from down at the plant. There’s always a new batch of brilliant engineers around—and, quite honestly, the equipment we’re handling isn’t that complicated.

If the computer industry gets its proverbial act together and standardizes hardware the way will be clear for retailers to enter the service world with little trepidation. Good applicable guarantees from manufacturers and a healthy supply of interchangeable parts will have to be readily available to equip the service person with the tools he needs to properly service customers. Hopefully we’re now on our way to such a reality.

PRESENT SALES AND LONG RANGE PROJECTIONS

At the Byte Shops our best sellers in microcomputers are the 8080 based kits with the standard S100 bus. There are a variety of good selling lines including our own BYT-8 machine. The important thing to note about existing microcomputers, however, is the standardization problem that we have just discussed. Our customers want to use peripheral and support equipment interchangeably, thereby assuring a better dollar buy. We’re getting there, hopefully. Other big sellers are the TV typewriters that either fit into the computer or can be interfaced later as a stand alone unit. Books and magazines are moving at a staggering rate, for example: Vol. 1, Introduction to Microcomputers by Osborne ... has sold 10,000 copies through our stores.

Our volume of sales generally exceeds even optimistic projections. Nothing ever sits long enough to collect dust...
on either warehouse or store shelves. As a result, I hesitate to make future sales projections. We can definitely see trends though. In memory we've gone from 4K to 8K and 16K to 64K is around the corner. There appears to be a movement toward the fully assembled and tested machines. As good software becomes more available, our customer's interest will probably lean more toward applications activities. That software will be available primarily in cassettes for easy input on home tape recorders. But with hardware costs quickly coming down, there should be good affordable floppy disk systems for the hobbyist as well as the small business user. In general, the trend is for both hardware and software to evolve from the developmental "hobbyist" state to the simplified, easy to operate "consumer" stage.

Right now the profit is available. The Pasadena store gross sales in its first three weeks was $26K. Portland: $14,500 in the first month. Mountain View, our first store and going without publicity or advertising whatsoever, was $6,400 in virgin territory. This thing has caught hold so fast that Jeff McKiever, our dealer in the Phoenix area now has three stores in Arizona and is planning others. Dick Moule in Lawndale, California, expanded to Westchester, and the new Byte Shop in downtown Tokyo is going great. We have little doubt that the personal computer market will insure our future.

A CONCEPT THAT BECAME A COMPANY

The time frame has been short between the technological availability of hobbyist computer components and programs, and their commercial availability. The Byte Shop, like the food super market, simply was a natural merchandizing evolution whose time had come. When technology and marketing meet, you will always find great sociological interaction at the intersection of the two lines that have made mankind thrive—the lines of innovation and commerce. That's the point where Byte took hold.
1977 NATIONAL COMPUTER CONFERENCE COMMITTEES

PROGRAM COMMITTEE

Chairman
Robert R. Korfhage
Southern Methodist University
Dallas, TX

P. Bruce Berra
Syracuse University
Syracuse, NY

Betty Maskewitz
Oak Ridge National Laboratory
Oak Ridge, TN

Lori Capadonno
Bell Laboratories
Whippany, NJ

Roger L. Mills
TRW Systems
El Segundo, CA

Karen Duncan
Medical University of South Carolina
Charleston, SC

C. V. Ramamoorthy
University of California
Berkeley, CA

Roger M. Firestone
Sperry Univac
St. Paul, MN

Eugene Smith
U.S. Department of Agriculture
Beltsville, MD

Frank Hubans
General Dynamics
Forth Worth, TX

Raymond T. Yeh
University of Texas
Austin, TX

Richard Lott
Bentley College
Waltham, MA

Jean Yue
Cyprus, CA

FINANCE COMMITTEE

Chairman
Edward V. Resta
E-Systems
Dallas, TX

Earl F. Hale, Jr.
Carrington, Coleman, Sloman,
Johnson and Blumenthal
Dallas, TX
COMMUNICATIONS COMMITTEE

Chairman
Norman P. Teich
Teich Communications Co.
Dallas, TX

Andre P. Beaupre
Strayton Corporation
Wellesley, MA

Rick Johnson
MRI Systems Corp.
Austin, TX

Larry V. Beckman
Tano Corporation
Metaire, LA

Jerry L. Kalman
Honeywell Information Systems
Phoenix, AZ

G. Thomas Catherines
Mohawk Data Sciences Corp.
Parsippany, NJ

Margie Kimbrough
Management Science America, Inc.
Atlanta, GA

John A. Dillon
General Automation, Inc.
Anaheim, CA

Connie Magne
Intel Corp.
Sunnyvale, CA

Thomas H. Edwards
Sycor Inc.
Ann Arbor, MI

Ruth M. McQueen
Amarillo College
Amarillo, TX

David L. Flack
International Marketing
Communications, Inc.
Denver, CO

Kent R. Nichols
Control Data Corp.
Minneapolis, MN

Francey Freeman
Motorola Data Products
Carol Stream, IL

Carol J. Richardson
Hill and Knowlton Inc.
Dallas, TX

Daniel Fullerton
Texas Instruments, Inc.
Houston, TX

Dennis L. Sullivan
KeyTronic Corp.
Spokane, WA

Ann L. Harrell
University of Texas Health
Science Center
Dallas, TX

Jean Wilkins
Atlantic Research Corp.
Alexandria, VA

George Harrison
Innovative Electronics Systems
Miami Lakes, FL

Anita Williams
The Exonomy Co., Triple I Div.
Oklahoma City, OK

Kathy Wilson
IST Datasystems
Memphis, TN

From the collection of the Computer History Museum (www.computerhistory.org)
EXHIBITS COMMITTEE

Chairman
Jerry Johns
Texas Instruments, Inc.
Houston, TX

Richard Adams
Modcomp
Ft. Lauderdale, FL

Gary Brunner
Harris Corporation
Dallas, TX

Gabe d'Annunzio
Prime Computer, Inc.
Framingham, MA

Paul Eisner
General Automation, Inc.
Anaheim, CA

Alfred Erickson
Dataproducts Corporation
Woodland Hills, CA

Ben Hayes
Datapoint Corporation
San Antonio, TX

Richard Klain
Memorex Corporation
Santa Clara, CA

Paul A. Kraska
Data 100 Corporation
Edina, MN

Ted E. Lorber
CalComp
Anaheim, CA

Robert E. Maddy
Tally Corporation
Kent, WA

LOCAL PROMOTION COMMITTEE

Chairman
Alex A. J. Hoffman
Texas Christian University
Fort Worth, TX

Mary Ann Chapman
Delphi Data Systems
Houston, TX

Richard Priest
University of Tulsa
Tulsa, OK
Gary Hammon
Austin, TX

E. Z. Million
E. Z. Million Associates
Oklahoma City, OK

OPERATIONS COMMITTEE

Chairman
Robert L. Wade
Continental Trailways
Dallas, TX

Howard Albertson
Compass Computer Services
Dallas, TX

Joe C. Duncan
Dallas, TX

Herb H. Starnes
Dallas Water Utilities
Dallas, TX

REGISTRATION COMMITTEE

Chairman
Wayne Churchman
Hewlett-Packard
Richardson, TX

Johnny Lamb
City of Dallas
Dallas, TX

William M. Parker
North Central Texas Council
of Governments
Dallas, TX

Libbie Neleigh
Braniff International
Dallas, TX

Pam Stevenson
Hewlett-Packard
Dallas, TX

SPECIAL ACTIVITIES COMMITTEE

Chairman
C. E. Rodriguez
East Texas State University
Commerce, TX

Sub-Committees
Programming Contest
C. E. Rodriguez, Chairman
East Texas State University
Commerce, TX

Duane Dean
Dallas Independent School District
Dallas, TX

Science Film Theatre
Marvin Talbott, Chairman
Texas Instruments, Inc.
Dallas, TX

David Pearce
Texas Instruments, Inc.
Dallas, TX
William M. Lively  
Texas A&M University  
Bryan, TX

Laurence A. Madeo  
University of Texas at Dallas  
Dallas, TX

Gabrielle Wiorkowski  
Consultant  
Dallas, TX

Fred Homeyer  
Angelo State University  
San Angelo, TX

**Technical Tours**

Paul Patak  
TRW Systems  
Dallas, TX

**Sightseeing**

Ann Korfhage  
Dallas, TX

Karol Frailey  
Dallas, TX

---

**PUBLICATIONS COMMITTEE**

*Chairman*

Gabrielle Wiorkowski  
Consultant  
Dallas, TX

---

**PROFESSIONAL DEVELOPMENT COMMITTEE**

*Chairman*

Ronne G. Ward  
University of Texas at Arlington  
Arlington, TX

Dan Smith  
E-Systems  
Greenville, TX

Ben Jarboe  
Logic Inc.  
Dallas, TX

---

**PERSONAL COMPUTING COMMITTEE**

*Chairman*

Harold A. Mauch  
PerCom Data Company  
Garland, TX

Ric Martin  
The Micro Store  
Richardson, TX
AMERICAN FEDERATION OF INFORMATION PROCESSING
SOCIETIES, INC. (AFIPS)

OFFICERS AND BOARD OF DIRECTORS

President
Theodore J. Williams
Purdue University
W. Lafayette, IN

Vice President
Albert S. Hoagland
IBM Corporation
San Jose, CA

Secretary
Sylvia Charp
The School District of Philadelphia
Philadelphia, PA

Treasurer
Walter A. Johnson
Consolidated Papers, Inc.
Wisconsin Rapids, WI

Executive Director
Robert W. Rector
AFIPS
Montvale, NJ

ACM Directors
Herbert Grosch
Sunnyvale, CA

IEEE Directors
Samuel Levine
Westport, CT

Carl Hammer
Univac Federal Systems
Washington, DC

Stephen S. Yau
Northwestern University
Evanston, IL

Stuart Lynn
University of California
Berkeley, CA

Merlin Smith
T. J. Watson Research Center
Yorktown Heights, NY

Data Processing Management Association Directors

Barry D. Lynch
Mercantile National Bank
Dallas, TX

William J. Moser
Venture Group, Inc.
Greensburg, OH

Ralph J. Leatherman
Hughes Tool Corporation
Houston, TX

From the collection of the Computer History Museum (www.computerhistory.org)
<table>
<thead>
<tr>
<th>Institute of Internal Auditors Director</th>
<th>Society for Computer Simulation Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>William E. Perry</td>
<td>Paul W. Berthiaume</td>
</tr>
<tr>
<td>The Institute of Internal Auditors</td>
<td>N. Y. Times Information Bank</td>
</tr>
<tr>
<td>Orlando, FL</td>
<td>Parsippany, NJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Society for Information Display Director</th>
<th>Society for Industrial and Applied Mathematics Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlo P. Crocetti</td>
<td>Donald L. Thomsen, Jr.</td>
</tr>
<tr>
<td>Rome Air Development Center</td>
<td>SIAM Institute of Mathematics</td>
</tr>
<tr>
<td>Griffis Air Force Base, NY</td>
<td>New Canaan, CT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Association for Educational Data Systems Director</th>
<th>Special Libraries Association Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas McConnell</td>
<td>Herbert S. White</td>
</tr>
<tr>
<td>Atlanta Public Schools</td>
<td>Graduate Library, School University</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>Bloomington, IN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>American Institute of Certified Public Accountants Director</th>
<th>American Institute of Aeronautics and Astronautics Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Mitchell</td>
<td>Ram K. Khatri</td>
</tr>
<tr>
<td>American Institute of Certified Public Accountants</td>
<td>Fairchild Space &amp; Electronics Co.</td>
</tr>
<tr>
<td>New York, NY</td>
<td>Germantown, MD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>American Statistical Association Director</th>
<th>American Society for Information Science Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Minich</td>
<td>Harold Borko</td>
</tr>
<tr>
<td>World Bank</td>
<td>UCLA School of Library Science</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>Los Angeles, CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument Society of America Director</th>
<th>Association for Computational Linguistics Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theodore J. Williams</td>
<td>A. Hood Roberts</td>
</tr>
<tr>
<td>Purdue University</td>
<td>Center for Applied Linguistics</td>
</tr>
<tr>
<td>W. Lafayette, IN</td>
<td>Arlington, VA</td>
</tr>
</tbody>
</table>

| NATIONAL COMPUTER CONFERENCE BOARD MEMBERS |  |
|--------------------------------------------|  |
| Vice Chairman—SCS Representative          |  |
| Ralph Wheeler                             |  |
| Lockheed Missiles and Space Corp.         |  |
| Sunnyvale, CA                             |  |

<table>
<thead>
<tr>
<th>Chairman—AFIPS Representative</th>
<th>AFIPS Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert S. Hoagland</td>
<td>Theodore J. Williams</td>
</tr>
<tr>
<td>IBM Corporation</td>
<td>Purdue University</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>W. Lafayette, IN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treasurer—AFIPS Representative</th>
<th>Harold Borko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walter A. Johnson</td>
<td>UCLA School of Library Science</td>
</tr>
<tr>
<td>Consolidated Papers, Inc.</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Wisconsin Rapids, WI</td>
<td></td>
</tr>
</tbody>
</table>
DPMA Representative
James F. Towsen
The Statesman Group
Harrisburg, PA

ACM Representative
Smith Dorsey
Rockwell International
Anaheim, CA

NATIONAL COMPUTER CONFERENCE COMMITTEE

Chairman
Russell K. Brown
Moore Paper Company, Inc.
Houston, TX

Morton M. Astrahan
IBM Research Laboratory
San Jose, CA

Al Hawkes
Sargent & Lundy Engineers
Chicago, IL

Jeffery D. Stein
On-Line Business Systems, Inc.
San Francisco, CA

IEEE—CS Representative
Lowell Amdahl
Northridge, CA

Harvey L. Garner
Stanford University
Stanford, CA

Jerry Koory
HW Systems
Van Nuys, CA

Irwin J. Sitkin
Aetna Life & Casualty
Hartford, CT

1977 NATIONAL COMPUTER CONFERENCE
Chairman
Portia Isaacson
University of Texas
Richardson, TX

1978 NATIONAL COMPUTER CONFERENCE
Chairman
Stephen W. Miller
Stanford Research Institute
Menlo Park, CA
SESSION CHAIRMEN

Altschuler, Gene  Henry, J. Shirley  Resta, Edward V.
Amdahl, Lowell D.  Horne, William J.  Rhoten, Ronald P.
Aronofsky, Julius S.  Ichikawa, Tadao
Avedon, Don M.
Banerji, Ranan B.  Jeffery, Seymour  Safford, Herbert B.
Betz, Nancy A.  Johnson, Marilyn  Schantz, Herbert F.
Bonnelette, Della T.  Johnson, Olin G.  Scheuermann, Peter
Brocato, Louis J.  Kar, Saroj  Smith, Eugene
Brown, James E.  Kennedy, John R.  Statland, Norman
Burns, William  Korfhage, Robert R.  Stone, Jack
Butler, Margaret K.  Knowles, Ben  Stonebraker, Michael
Cantrell, William E.  Lackmann, John  Storch, Nancy A.
Capra, Gerard T.  Landstein, Julie E. K.  Summers, William P.
Chang, Philip Y.  Lott, Richard  Suttle, Jimmie R.
Chen, Peter P. S.  Mathur, Francis P.  Thayer, Richard H.
Cochran, Anita  Matous, James O.  Thiess, Helmut E.
Cotterman, William W.  McClain, William J.  Townsen, James F.
Dale, Alfred G.  McGill, Michael J.  Turn, Rein
Dubnow, Art  Merwin, Richard E.  Turner, Nat
Duvall, Lorraine M.  Miller, Edward F.  Vick, Charles R.
England, Gordon R.  Mills, Roger L.  Whinston, Andrew B.
Fenwick, William A.  Morgan, Howard L.  White, Robert
Firestone, Roger M.  Newpeck, Frederick F.  Wiederhold, Gio
Frailey, Dennis J.  Osborne, Adam  Wilson, David
Fuller, Donald W.  Wu, Y. S.
Fuller, Samuel H.  Parker, Donn B.  Woods, Larry D.
Gates, William H.  Peterson, Lynn L.  Wu, Y. S.
Han, Yih-Wu  Pogue, Richard  Yau, Stephen S.
Harris, Fred H.  Poh, Susan S.  Yormark, Beatrice
Zakin, Noel
PARTICIPANTS

Airapetian, A. N.
Airhart, T. E.
Albertson, L.
Allen, G. R.
Allison, D.
Amdahl, G.
Anderson, R. D.
Aronofsky, J. S.
Austing, R. H.
Avedon, D. M.

Ballasubramanian, K.
Barry, T.
Barton, G. S.
Bell, D. H.
Benton, J. R.
Berkey, J.
Berra, P. B.
Berson, J.
Bigelow, R. P.
Blazie, D.
Bolnick, F. I.
Borko, H.
Bowie, J.
Braun, L.
Burns, W. J.

Carlstrom, D.
Carter, W. C.
Cary, T.
Casper, G. G.
Castelberg, M. J.
Chamberlin, H.
Clarke, L.
Cole, C.
Colvin, N.
Cornell, J. A.
Cotterman, W. W.
Couger, J. D.
Cox, J. A.
Cragon, H.

Dejkia, W. J.
Dodd, G.
Dratch, J.
Duncan, K.
Dunstan, E.

Earle, J.
Edwards, J.
Eger, J. M.
Elfenbein, L.
Elspas, B.
Elwood, W. F.

Faber, E.
Felsenstein, L.
Feng, T. Y.
Flores, A.
Fly, W. W.
Fossum, B. M.
Foster, C. C.
Frame, R. J.
Frenzel, L.
Fry, J. P.
Fu, K. S.
Fuchs, H.
Fuller, D. W.
Furr, C.

Galler, B. A.
Garrison, O.
Gianola, J.
Goddard, A.
Goguen, N.
Goldberg, J.
Grosch, H. R. J.
Guzeman, O.
Gwinner, R.

Harmon, G.
Harris, D. K.
Harris, F. H.
Harrison, H.
Haseman, W. D.
Heiser, R.
Held, G.
Helmers, C.
Henry, S.
Hoagland, A.
Hollow, D.
Hopkins, A. L.
Horne, W. J.
Howden, W. E.
Howell, T. A.
Hsiao, D. K.

Jamison, S. L.
Jeffrey, S.
Jenson, D.
Joseph, E. C.

Kar, S. K.
Kent, B.
Kent, W.
Kildall, G.
King, W. F.
Kohlmeir

Lackmann, J.
Lazarus, R.
Leavitt, D.
Lee, R.
Lehmann, J.
Little, J. C.
Lum, V. Y.

MacLean, J. D.
Manola, F.
Maxmen, J.
McCloud, R.
McCracken, D.
McDonald, J. F.
McKemie, G. W.
McLean, J. D.
McLeod, J.
McNair, E. A.
McNulty, J.
Meyer, D.
Miller, J.
Mills, H.
Mills, R. L.
Moore, G.
Morelock, T. J.
Musser, D. R.

Neidell, N. S.
Nelson, T. H.
Norman, S. L.
Nyborg, P. S.
Nycum, S. H.

Osborne, A.
Osborne, J.
Oyer, P. D.

Painter, J. A.
Palmer, C.
Panko, J. W.
Paul, J. T.
Peaceman, D. W.
Peck, J. C.
Peebles, R.
Perkins, C.
Poland, S.
Poppa, R.
Posdamer, J.
Purdy, G.

Rakel, R. E.
Rector, C.
Reddy, D. R.
Ruder, B.
Rule, J. B.
Abbey, Duane C.
Abbey, Mary W.
Abrahamson, Howard
Abrams, Marshall D.
Ackerman, L. V.
Agrawal, Dharma P.
Aicher, J. R.
Aiken, Robert
Aines, Andrew A.
Albers, Glen
Alexiou, John K.
Allen, John R.
Allen, Rodney H.
Amarel, Saul
Amdahl, Carlton G.
Andersen, Niels C.
Anderson, Henry D.
Anderson, Peter G.
Anderson, Richard J.
Anderson, Robert H.
Anderson, Thomas C.
Andree, Richard V.
Antal, J. R.
Archibald Jr., J. A.
Armer, Paul
Arterbery, Vivian J.
Ash, Alvin
Astrahan, Morton M.
Atwood Jr., Delbert W.
Augustin, Donald C.
Aupperle, Eric M.
Austin, Donald M.
Austing, Richard H.
Ayer, Nancy L.
Ayers Jr., Lawrence F.
Baer, J. L.
Baird, George N.
Baker, Bob E.
Baker, F. T.
Baker, James A.
Baker, Robert L.
Baker, Ronald A.
Balkovich, Edward E.
Ball, N. A.
Baltzer, P. K.
Banerji, Ranan B.
Barlow, Allen E.
Barnes, Bruce H.
Barnes, Robert F.
Barrett, Octo
Barr, William J.
Barrett, William A.
Bassler, Richard A.
Bate, Roger R.
Bates, Madeleine
Bauman, Burton L.
Baxter, Fred
Beall, W. H.
Bearden, G. D.
Beck, Leland
Belzoni, J. L.
Belford, Geneva
Bell, Thomas E.
Belzer, Jack
Bemer, R. W.
Bennett, John L.
Berg, Frank A.
Berg, John L.
Berger, Ralph
Berk, Toby
Berning, Paul T.
Bernstein, George B.
Bernstein, M. L.
Bernstein, Ralph
Berra, Bruce
Betz, Nancy
Bewley, William L.
Bezalel, Gavish
Bigelow, Robert
Billingsley, Fred C.
Bilyk, Walter
Binder, Richard D.
Binford, Thomas O.
Bise, Robert G.
Bitterli, Charles V.
Black, Donald V.
Blanc, Robert P.
Blomgren, George H.
Bloomfield, James A.
Blue Sr., Richard B.
Blum, Joseph
Bodoin, Morris J.
Bollenbacher, Roger L.
Bono, Peter R.
Booth, Grayce M.
Booth, Taylor
Bork, Alfred
Bouknight, Jack
Brackett, John W.
Braithwaite, William R.
Braun, Randal R.
Brekhous, Harry E.
Bressler, Robert
Brociner, Betty B.
Brown, John R.
Brown, Russell K.
Browne, Peter S.
Bryan, G. E.
Burlakoff, Mike
Burns, Joseph L.
Burns, Lawrence E.
Burns, William J.
Burton Jr., William D.
Buscher, David J.
Butler, George
Butler, Robert S.
Buxbaum, Richard J.
Cady, George M.
Campaingne, Howard
Campbell, John B.
Campbell, Rosalie A.
Campise, James A.
Cannon Jr., George R.
Cannon Jr., Robert L.
Caplan, David
Capodanno, Lori
Cappraro, Gerard T.
Carey, Bernard J.
Carlson, Carl R.
Carlson, Eric D.
Carlson, Gary
Carlson, James C.
Carlson, Richard R.
Carter, George
Case, II, Leon R.
Case, Richard P.
Cashman, Thomas J.
Cashton, Sidney
Castruccio, Peter A.
Champine, G. A.
Chan, Maynard M. W.
Chandrasekaran, B.
Chang, Donald Y.
Chang, Hsu
Chansky, Leonard M.
Charp, Sylvia
Chauhan, Rohi
Chen, Peter P.
Chen, Robert C.
Chen, Thomas T.
Chen, Tien C.
Cheung, Roger
Cheydleur, Benjamin F.
Chiaramiglio, Lucio
Chinitz, M. P.
Cho, Seon H.
Chu, W. W.
Chu, Yaohan
Clema, Joe K.
Clough, Marlen S.
Cohen, Dan
Cohen, Jack
Cole, G. D.
Hartwick, R. D.  
Hattery, Theodore A.  
Hedges, Bill  
Hedrick, G. E.  
Henne, Randy L.  
Henschen, George J.  
Higgins, Alan N.  
Ho, Siu-bun F.  
Ho, Thomas I.  
Hobbs, Jerry R.  
Hodge, Donald L.  
Hodge, Then D.  
Hodges, Ann G.  
Hoffman, Lance J.  
Hoffman, Robert H.  
Holden, Alistair D.  
Holme, Dorothea R.  
Holmes, Harvard  
Hook, Harvey O.  
Hoover, L. R.  
Hopewell, Lynn  
Hopper, Grace M.  
Hopwood, Gregory L.  
Hord, R. M.  
Horne, William J.  
Howell, Jo Ann  
Hoyt, Patrick M.  
Huang, H. K.  
Hubans, Frank  
Huckell, Gary R.  
Humphrey, Timothy L.  
Hunt, Hurshell H.  
Huntwork, Paul K.  
Hurst, Len  
Hutchison, John S.  
Hwang, F. K.  
Ingerman, P. Z.  
Jacobs, Stanley E.  
Jacobus, Gilbert C.  
James, Thomas A.  
Janac, Karel  
Jefferson, David K.  
Jensen, Alton P.  
Jensen, Raymond A.  
Jessep, Donald C.  
Johnson, A. I.  
Johnson, James H.  
Johnson, O. G.  
Johnson, Walter L.  
Jones, Anita K.  
Jones, John L.  
Jones, Neil D.  
Joyce, James  
Juhlin, Kenton D.  
Julke, Robert T.  
Kaber, A. B.  
Kagan, Claude A.  
Kahng, S. W.  
Kain, Richard Y.  
Kampen, Garry  
Kandel, A.  
Karpplus, W. J.  
Kasarda, Andrew J.  
Katic, James R.  
Katzner, Meyer  
Kavach, Lalis D.  
Keller, Roy F.  
Kieburz, R. B.  
King, Alan S.  
King, James C.  
Kirshenbaum, Frank  
Kish, William  
Kiviart, Philip J.  
Klassen, Daniel L.  
Klingler, A.  
Koch, Harvey S.  
Kornthage, Robert R.  
Kornfield, N. R.  
Koss, Adele M.  
Koss, Neal  
Kovac, John G.  
Kovach, Ladis D.  
Kozik, Eugene  
Kraley, Michael F.  
Krishnarao, T.  
Kroeger, Joseph H.  
Krulee, Gilbert K.  
Kuch, T. D.  
Kurthara, Thomas M.  
Kurtzberg, Jerome M.  
LaFrance, Jacques  
Lai, Kwok-Woon  
Lamothe, Raymond J.  
Lane, Malcolm G.  
Larson, Avid G.  
Lasser, Daniel J.  
Latker, Alex C.  
Laurance, Neal  
Lawrie, Duncan W.  
Lazar, Leonard M.  
Le Beux, Pierre J.  
Leasure, Bruce R.  
Leavitt, M. R.  
Ledbetter, Hardy  
Ledin, Victor  
Lee, J. A. N.  
Lee, Marshall  
Lennon, James J.  
Leung, Francis W.  
Levin, Roy  
Ligler, George  
Lin, Wen-te K.  
Lincoln, A. J.  
Linden, Theodore A.  
Liskov, Barbara  
Liu, C. L.  
Liu, Jane W.  
Logan, J. J.  
Logan, John  
Logue, Joseph C.  
Lomet, David B.  
Long, Harvey S.  
Long, John M.  
Lott, Richard  
Lovegrove, Donald H.  
Lowe, Thomas C.  
Lozier, Daniel W.  
Luchido, A. P.  
Lucky, Dennis R.  
Ludwig, Herbert R.  
Luk, Clement  
Lukas, George  
Luche, Richard F.  
Lutz, Michael J.  
Lycklma, H.  
Lykos, Peter  
Lyle, Robert F.  
Lynch, John T.  
Lyons, W. W.  
Machover, Carl  
MacLeod, Franklin B.  
Madrigal, Orando S.  
Madron, Beverly B.  
Maguire, John N.  
Maniates, John  
Mann, Richard L.  
Manola, Frank  
Maple, Claire G.  
Marcowitz, Alan B.  
Marks, Sema  
Marmor-Squires, Ann B.  
Maskowitz, Betty F.  
Mason, Philip H.  
Matheny, Charles S.  
Mathews, Max V.  
Mathews, Walter M.  
Mathison, Stuart  
Matyas, Stephen M.  
McClain, William J.  
McCluskey, E. J.  
McCreary, R. R.  
McCuskey, William A.  
McDonald, Clement J.  
McDonald, Nancy H.  
McFadden, Ted  
McGill, Michael J.  
McGregor, P. V.  
McInnis, Bayliss  
McJones, Paul  
McKenna, James  
McKnight, R. S.
AUTHOR INDEX

Abe, Masayuki, 615
Abrams, Marshall D., 723
Abmayr, David W., 523
Agrawal, O. P., 955
Aiso, Hideo, 931, 947
Arnold, George W., 461
Arthur, Couley T., 733
Ashany, Ron, 579
Aurdal, Eivind, 509

Bachman, Charles W., 69
Bailey, Andrew D. Jr., 843
Baker, D. B., 435
Ball, Marion J., 327
Barbacci, Mario 161
Bardas, R., 331
Bastyr, David J., 775
Bayse, William A., 595
Bechtolsheim, Andy, 645
Belov, Charles A., 791
Ben David, Abraham S., 669
Black, James L., 397
Boardman, Thomas L. Jr., 201
Bonato, Roland R., 349
Bonczek, R. H., 855
Bose, A. K., 795
Brantley, W. C., Jr., 379
Brasher, Joseph R., 59
Breuer, M. A., 711
Burr, William E., 131, 139, 147
Burris, Harrison R., 937

Carson, John H., 35
Case, Ronald M., 789
Cash, James I., Jr., 843
Caudill, Ray, 269
Chandler, John S., 895
Chansler, Robert J., 657
Chen, Peter Pin-Shan, 77
Chen, Thomas T., 321
Chiba, Masato, 615
Clark, J. F., 987
Cleaveland, J. C., 629
Cohen, D. M., 987
Coleman, Aaron H., 131, 185
Considine, James, 865
Constantin, Serban D., 837
Cornsyn, John J., 185
Courtney, Robert H., Jr. 97

DeBlasis, Jean-Paul, 1
DeLutis, Thomas G., 895
Deppe, Mark E., 499
DeSouza, P. T., 801

Duran, Joe, 49
Durham, Ivor, 657
Ehrensberger, Michael, 9
Feiler, Peter, 657
Firestone, Roger M., 469
Fitzgerald, Michael P., 449
Fox, Shirley J., 295
Freedman, Daniel, 255
Fry, James P., 499
Fuchs, Henry, 49
Fuller, Samuel H., 139, 147, 243, 637

Gaines, R. Stockton, 105
Gammiller, Robert C., 753
Gause, Donald C., 255
Giannetti, Ronald A., 55
Glasmann, S., 105
Gober, Patricia E., 889
Gordon, Robert 161
Grant, Alexander P., 481
Groner, G. F., 63
Groves, C. F., 331
Guido, Anthony A., 865

Hammer, Michael, 123
Han, Y. W., 13
Hartwick, R. Dean, 285
Hays, Daniel G., 475
Hebdirdt, J. S., 331
Heid, Joseph P., 207
Hemphill, John M., 969
Himmel, David P., 785
Ho, G. S., 13
Ho, Thomas I. M., 569
Hoberman, Robert S., 545
Hollaar, Lee A., 697
Hollman, Stephen N., 765
Holsapple, C. W., 855
Hopwood, M. D., 63
Howbrigg, Rosemary, 161
Hoyt, Patrick M., 529
Hugo, I. St. J., 741
Hyman, William, 309

Ichikawa, Tadao, 947
Iimura, Jiro, 615

Johnson, Brian, 49
Johnson, George Kim, 771
Johnson, James H., 55
Johnson, Thomas H., 1
Jones, Anita K., 657
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vickers, W. Harry</td>
<td>973</td>
</tr>
<tr>
<td>Wagner, James</td>
<td>175</td>
</tr>
<tr>
<td>Waksman, Abraham</td>
<td>833</td>
</tr>
<tr>
<td>Walser, Randal L.</td>
<td>301</td>
</tr>
<tr>
<td>Warner, James R.</td>
<td>39</td>
</tr>
<tr>
<td>Warren, Jim C., Jr.</td>
<td>493</td>
</tr>
<tr>
<td>Watanabe, Taisuke</td>
<td>217</td>
</tr>
<tr>
<td>Watkins, Shirley W.</td>
<td>723</td>
</tr>
<tr>
<td>Weinberg, Gerald M.</td>
<td>255</td>
</tr>
<tr>
<td>Wieselman, Irving L.</td>
<td>363</td>
</tr>
<tr>
<td>Welch, James S., Jr.</td>
<td>35</td>
</tr>
<tr>
<td>Wells, Mark B.,</td>
<td>389</td>
</tr>
<tr>
<td>Whinston, Andrew B.</td>
<td>843, 855</td>
</tr>
<tr>
<td>Williams, Thomas A.</td>
<td>55</td>
</tr>
<tr>
<td>Wilson, E. A.</td>
<td>341</td>
</tr>
<tr>
<td>Wood, Helen M.</td>
<td>27</td>
</tr>
<tr>
<td>Woodgate, H. S.</td>
<td>277</td>
</tr>
<tr>
<td>Woody, Charlene A.</td>
<td>449</td>
</tr>
<tr>
<td>Wu, Kuang Chan</td>
<td>827</td>
</tr>
<tr>
<td>Yang, Kenneth C.</td>
<td>349</td>
</tr>
<tr>
<td>Yoshikawa, Ryoichi</td>
<td>931</td>
</tr>
<tr>
<td>Yourdon, Edward</td>
<td>261</td>
</tr>
<tr>
<td>Zuckerman, Susan</td>
<td>161</td>
</tr>
</tbody>
</table>