R2—A natural language question-answering system

by K. BISS, R. CHIEN and F. STAHL

University of Illinois at Urbana-Champaign
Urbana, Illinois

INTRODUCTION

A large number of systems involving computers require a high degree of man-machine interaction. In these systems the capability of the computer to process natural language information would be extremely useful as that eliminates the need for the user to learn various formal languages for the purpose of interaction.

In view of the fact that computational costs are decreasing while programming costs are increasing rapidly, computers with natural language processing capabilities will become practical for many applications. A good way to study natural language man-machine communication is through the development of question-answering systems; for it is in these systems that a well-defined natural language discourse takes place.

Research aimed at developing intelligent question-answering systems has been carried on for over a decade. For information concerning these systems we refer the reader to Simmons. Of the more advanced question-answering systems Green and Raphael have developed a very powerful deductive procedure and Simmons, et al. introduced an extremely attractive representation scheme.

Reported in this paper is an intelligent natural language question-answering system called the R2 system. The system introduces a variety of new techniques and encompasses the features found in previous systems. It accepts a wide range of input sentences in English and deduces answers to input questions based upon available information. The data base chosen to demonstrate the capabilities of the system is the Illinois Drivers Manual, Rules of the Road, which consists of about 2000 English sentences.

This particular data base was chosen because its contents are representative of the type of facts that one normally encounters. In addition, the number of facts associated with traffic laws is large enough not to be considered trivial as verified by the fact that it is larger than any other data base currently being used for natural language question-answering systems; yet it is small enough to be handled adequately by our present computer configuration.

The internal representation in the R2 system is based upon a high-order logical calculus that permits the expression of wide range of natural language information. Input to the system undergoes syntactic and semantic analysis in order to be transformed into the internal representation scheme. A recursive goal-oriented theorem-proving algorithm is used to deduce answers to questions posed to the system.

In the second section we comment on some natural language question-answering systems by pointing out some of the features found in these systems. In the third section is described the R2 system and the high-order calculus that is used for the internal representation of natural language information. Finally, an example showing the processing of a typical question is presented.

COMMENTS ON SOME NATURAL LANGUAGE QUESTION-ANSWERING SYSTEMS

Generally, natural language question-answering systems use some formal internal representation for facts and questions in order to facilitate deductive manipulations. In a number of earlier systems the representation was based upon some type of limited relational calculi, as for example Raphael's SIR, and Black's SQA.

Green and Raphael subsequently developed a system that offered the full expressiveness of the first-order predicate calculus for the representation of natural language information. The deductive procedure of this

* This work was supported by the Office of Education under Contract No. OE C-1-7-071213-4557 and by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under contract DAAB-07-67C-0199.
system was based on an automatic theorem-proving
algorithm that was first described by Robinson and
improved upon by Wos, et al. The use of first-order
predicate calculus as a formal language for the
representation of natural language information when
used in conjunction with automatic
first-order language because we have a relation, namely
after, whose arguments are forced to be relations,
namely crossed and changed, rather than some
individuals. In (2) we cannot put the sentence into the
first-order language because we are faced with the
quantification of a variable which ranges over
situations not individuals. That is, the sentence states that
for all possible situations a certain condition holds (i.e.,
that a car must yield to a pedestrian).
Simmons, et al. developed a system that used
nested binary relations for the formal representation of
natural language information. The relations they used
were of the form (aRb) where a and b could in turn be
nested binary relations and R could represent a com-
plex relationship. Note that this scheme overcomes the
representational problems mentioned above for the
first-order predicate calculus. However, the system
still lacks the capability to handle either negation or
quantification.

The R2 question-answering system uses a high-order
formal language for the internal representation of
information and a recursive theorem-proving procedure
for performing the necessary deductive operations. This
system can represent relations between relations and
quantification of variables ranging over rather complex
structures. In addition, the goal-oriented theorem-
proving procedure performs sophisticated logical
inference through the use of contextual information. In
the section that follows a description of the R2 system
is given.

THE R2 NATURAL LANGUAGE QUESTION-
ANSWERING SYSTEM

An intelligent natural language question-answering
system must be capable of performing sophisticated
linguistic processing of input information in order to
arrive at a well-structured internal representation upon
which extensive logical processing can be performed.
That is, any high quality natural language question-
answering system must have:

1. an internal data structure sufficiently rich to
represent the subtle semantic differences found
in natural language information;
2. a method of transforming natural language into
that structure; and
3. a strong deduction algorithm for manipulating
the information in that structure.

The R2 question-answering system has been designed
to encompass these features. A parser and a semantic
converter are used to transform natural language in-
formation into the high-order language. A deduction
algorithm manipulates the facts represented in the
high-order language to synthesize the necessary in-
formation for the answering of questions posed to the
system.

The parser (or syntactic analyzer) breaks down a
sentence to show the structural relationships among
the parts of the sentence. The parsing indicates what
words modify other words (and which words they
modify); what are the subject, object, and predicate of
the sentence, etc. This type of information is essential
to any system that utilizes natural language in an
intelligent manner. If, for example, a sentence relating
to some action is given, then it is necessary to differ-
ciate between that which is performing the action,
and that upon which the action is being performed. The
syntactic analysis of that sentence indicates this type
of information.

The semantic converter accepts the syntactically
parsed statements (i.e., facts and questions) and deter-
mines if these parsings are semantically well formed.
If the statement is well formed, it is converted into the
high-order language, and if it is not, then it is returned
to the parser.

The deducer receives its information from the semi-

tic converter expressed in the high-order language.
Included in this information is a formal statement of
the question that the system is attempting to answer.
Through a recursive goal-oriented deductive procedure
the necessary implicit information is generated. This
new information is then used to answer the question.

The high-order language

The high-order language used in the R2 system con-
tains simple objects like car, driveway, pedestrian; more
complex objects like green car, or a car in a driveway; relations like 'a car yields to a pedestrian'; relations between relations like 'John crossed the street after the light changed'; and variables that range over these various entities.

Simple type objects like car, driveway, and pedestrian are represented by character strings identical to their orthographic representation. The more complex objects that are modified in some way like green car and a car in a driveway are represented as the unary relations green(car) and (in(driveway))(car), respectively, where the modifier becomes the relation symbol and the object becomes the argument of that relation. Of course, a modifier may also modify an object that is already modified. Thus, a green car in a driveway would become (in(driveway))(green(car)).

In order to appreciate this formalism think of green as a function whose value is equal to its argument with the additional property of being green. Thus, anything that applies to the object car, without qualification, also applies to the modified object green(car).

A relation like 'a car yields to a pedestrian' is represented as an n-ary relation symbol followed by the appropriate arguments. In this case, the relation is binary and would be represented as yield(car, pedestrian).

In general, an n-ary relation may take as arguments any objects, relations, or variables (so long as they make sense in the domain of discourse being considered). These nested relations may be connected with the logical symbols A, V, ¬, and → as in other logical languages, and quantification may occur over any variables appearing in these expressions. For a formal definition of this language see Biss, et al.3

Using this language we can now represent the sentences which we could not handle previously. Thus, the sentence

John crossed the street after the light changed

would become

after(cross(John, street), change(light))

where after is, in this example, a binary relation relating cross and change. In the same manner, the sentence

A car must always yield to a pedestrian

would become

Vy(y→must(yield(car, pedestrian)))

where y is a variable that ranges over structures such as (in(driveway))(car)

or

(in(crosswalk))(drunk(pedestrian)).

Question-answering in the R2 system

To best illustrate the performance of the R2 system let us look at an example. Suppose the system receives the question:

Do cars always have to yield to pedestrians? (3)

and it has at its disposal the facts:

Pedestrians not in a crosswalk must yield to cars. (4)

And

If x must yield to y

then y does not have to yield to x. (5)

from the data base already stored in the formal language.

After the question has entered the system it is transformed into the internal formal language and is posed as a theorem for the system to prove. If the theorem is proven, the answer to the question is yes; if the negation of the theorem is proven, the answer is no.

The parser starts the transformation process by noting that in (3) cars is the subject, yield the verb, pedestrian the object, always an adverb modifying the main verb, have to is an auxiliary, etc. The grammar used for the syntactic analysis is a modified context-free immediate constituent phrase-structure grammar.10 The form of the output from the parser is

PREDICATE(modifiers)(SUBJECT(modifiers),
OBJECT(modifiers))

Thus, the subject and the object of the sentence are the arguments of the predicate.

The syntactic information is given to the semantic converter which then puts the sentence into the high-order language, as in (6). (Notice that the question word do is dropped).

always(have to(yield(car, pedestrian)))) (6)

This statement is now taken to be the theorem to be proven. At this point the expression have to is replaced by must in order to normalize the text. Thus we have:

always(must(yield(car, pedestrian)))). (7)

The converter must now check to make sure that (7) does not conflict with what is known about the real world. This is done by using both the semantic rules
Figure 1

for this domain:

yield(traffic, traffic) \hspace{1cm} (8)
must(n-ary relation) \hspace{1cm} (9)
always(n-ary relation) \hspace{1cm} (10)

and the tree of Figure 1 as the axioms of a system which must prove the well-formedness of (7).

The tree in Figure 1 gives the information that cars and trucks are motor vehicles, which are vehicles, which are traffic; and that pedestrians are traffic.

From (10) the converter knows that in order for (7) to be considered well formed it must be shown that

must(yield(car, pedestrians)) \hspace{1cm} (11)

is a well-formed n-ary relation. But, from (9) we know that (11) is a well formed unary relation if

yield(car, pedestrian) \hspace{1cm} (12)

is a well-formed n-ary relation. From (8) we know that (12) is a well-formed binary relation if it can be shown that car is a type of traffic and pedestrian is also a type of traffic. But from the tree in Figure 1 it is known that both cars and pedestrians are traffic, and, therefore, the yield relation is well formed, consequently (11) is well formed. Thus, (7) is well formed and the semantic converter concludes that what it was given makes sense in the real world.

The last task that the semantic converter must perform is that of replacing always in (7) with a quantifier. Thus (7) would become

\[\forall y (y \rightarrow \text{must(yield(car, pedestrian)))} \] \hspace{1cm} (13)

where y is a variable ranging over situations. The formula in (13) states that under all situations cars must yield to pedestrians, which is just what (7) says.

But (13) implies

\[\forall x_1 \forall x_2 (\text{must(yield(x_1(car), x_2(pedestrian))))} \] \hspace{1cm} (14)

where \(x_1 \) is a variable ranging over situations on car, and \(x_2 \) is a variable ranging over situations on pedestrian.

The deducer receives (14) and tries to prove that it is a theorem. The theorem is proven by contradiction using a recursive goal-oriented theorem-proving procedure. That is, an attempt will be made to show that the negation of (14) contradicts the information which the system has. In this particular case the system has (4) and (5) stored in the high-order language as:

\[\text{must(yield((not(in(crosswalk)))\(pedestrian\), car))} \] \hspace{1cm} (15)

and

\[\forall x \forall y [\text{must(yield(x, y))} \rightarrow \neg \text{must(yield(y, x))} \] \hspace{1cm} (16)

respectively.

At first, the deducer tries to prove that (14) is true by showing that (17) contradicts the relevant axioms, namely (15) and (16) in this case.

\[\neg \forall x_1 \forall x_2 (\text{must(yield(x_1(car), x_2(pedestrian))))} \] \hspace{1cm} (17)

The system will, of course, not be able to prove (14) since it is not true, as can be seen by looking at (15). Thus, the system eventually tries to prove that (14) is false, i.e., that (17) is a theorem. In order to prove that (17) is a theorem, we try to prove that its negation (14) contradicts the axioms (15) and (16). Now, (16) is rewritten as

\[\neg \text{must(yield(x, y))} \lor \neg \text{must(yield(y, x))} \] \hspace{1cm} (18)

since \(A \lor B \) is equivalent to \(\neg A \lor B \), where universal quantification has been made implicit. Then,

\[\neg \text{must(yield(x_1(car), x_2(pedestrian))))} \] \hspace{1cm} (19)

follows from (14) and (18) by recursively applying the high-order resolution on them. Now, (19) resolves with (15) if we let \(x_2 = \text{not(in(crosswalk))} \) and \(x_1 = \emptyset \) (the empty substitution), generating a contradiction. Thus, (17) which means

cars do not always have to yield to pedestrians

is true. Therefore, the answer to the question

Do cars always have to yield to pedestrians?

is no.

Each step of the deduction may, as in this example, appear as merely the matching of two identical terms.
or the instantiation of some variable. It should be noted that the theorem-proving procedure can handle much more complex deductions than this. Specifically, the procedure recursively attempts to perform deduction at every level of nesting. For a more detailed description of this procedure along with other examples involving more complex deductions see Biss, et al.4

Now that the basic procedure has been illustrated for questions of the yes/no type, we can consider the questions of the form

$$\exists x \psi(x)$$

i.e., ‘Is there an x such that ψ(x) is true?’ where ψ(x) is any statement involving the variable x. The deduction algorithm attempts to produce a substitution instance p such that ψ(p) is true.

Suppose we ask under what conditions must a pedestrian yield to a car?

which is represented formally as

$$\exists x (x \rightarrow \text{must(yield(pedestrian, car)))}$$

or equivalently as

$$\exists x_1 \exists x_2 (\text{must}(x_1(\text{pedestrian}), x_2(\text{car}))).$$ (20)

The result of the deduction procedure is that the negation of (20) contradicts the axioms. Therefore, the answer to the question is the substitution instance that was used for the variables in order to arrive at the contradictions. That is, the answer is

when

$$x_1 = \text{not(in(crosswalk))}$$

$$x_2 = \emptyset$$

or equivalently

when pedestrian not in the crosswalk.

CONCLUSION

The R2 system described in this paper exhibits a number of advanced features not found in existing natural language question-answering systems. It is based upon a high-order logical calculus that allows the embedding of relations, and quantification over rather complex structures thus permitting the expression of a wide range of natural language information.

Two factors, the ease of transforming natural language information into the high-order representation, and the existence of a high-powered recursive deduction algorithm, have made R2 a very powerful system indeed. The techniques developed for the system are directly applicable to many other factual English data bases without modification. These techniques may also be applied to other areas that might involve automated natural language processing, such as: computer-aided instruction, management information systems, or document retrieval systems.

REFERENCES

1 R ANDERSON W W BLEDSOE
A linear format for resolution with merging and a new technique for establishing completeness
Journal of the ACM Vol 17 No 3 pp 525-534 July 1970

2 P B ANDREWS
Resolution and merging
Journal of the ACM Vol 15 No 3 pp 367-381 July 1968

3 K O BISS R T CHIEN F A STAHL
A data structure for cognitive information retrieval
Coordinated Science Laboratory University of Illinois Urbana Illinois 1970

4 K O BISS R T CHIEN F A STAHL
Logical deduction in the R2 question-answering system
Coordinated Science Laboratory University of Illinois Urbana Illinois 1971 (to appear)

5 F S BLACK
A deductive question-answering system

6 C C GREEN
Theorem-proving by resolution as a basis for question-answering systems

7 C C GREEN B RAPHAEL
The use of theorem-proving techniques in question-answering systems

8 D W LOVELAND
A linear format for resolution
University of Pittsburgh Dept of Computer Science 1968

9 B RAPHAEL
A computer program for semantic information retrieval

10 J A ROBINSON
A machine-oriented logic based on the resolution principle
Journal of the ACM Vol 12 No 1 pp 23-41 January 1965

11 J A SCHULTZ W T BIELBY
An algorithm for the syntactic analysis in the R2 information system
Coordinated Science Laboratory University of Illinois Urbana Illinois 1970

12 R M SCHWARZ J F BURGER R F SIMMONS
A deductive question-answering for natural language inference
Communications of the ACM Vol 13 No 3 pp 167-183 March 1970
13 R F SIMMONS
Answering English questions by computer: A survey
Communications of the ACM Vol 8 No 1 pp 53-69 January 1965

14 R F SIMMONS
Natural language question-answering systems: 1969

15 R F SIMMONS J F BURGER R M SCHWARCZ
A computational model of verbal understanding

16 L WOS G A ROBINSON D F CARSON
Some theorem-proving strategies and their implementation

17 L WOS G A ROBINSON D F CARSON
The unit preference strategy in theorem-proving
Proceedings of the Fall Joint Computer Conference Vol 26 pp 615-621 Spartan Books 1964

18 L WOS G A ROBINSON D F CARSON
Efficiency and completeness of the set of support strategy in theorem-proving
Journal of the ACM Vol 12 No 4 pp 536-541 October 1965

19 L WOS G A ROBINSON D F CARSON
L SHALLA
The concept of demodulation in theorem-proving
Journal of the ACM Vol 14 No 4 pp 698-709 October 1967