Abstract
Surface fairing, generating free-form surfaces satisfying aesthetic requirements, is important for many computer graphics and geometric modeling applications. A common approach for fair surface design consists of minimization of fairness measures penalizing large curvature values and curvature oscillations. The paper develops a numerical approach for fair surface modeling via curvature-driven evolutions of triangle meshes. Consider a smooth surface each point of which moves in the normal direction with speed equal to a function of curvature and curvature derivatives. Chosen the speed function properly, the evolving surface converges to a desired shape minimizing a given fairness measure. Smooth surface evolutions are approximated by evolutions of triangle meshes. A tangent speed component is used to improve the quality of the evolving mesh and to increase computational stability. Contributions of the paper include also an improved method for estimating the mean curvature.