2011 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia
Download PDF

Abstract

Computation-intensive multimedia applications are emerging on mobile devices. System-on-Chip (SoC) offers high performance at a decreased size for these devices. SoC often integrates tens of cores and uses Network-on-Chip (NoC) as its communication infrastructure. To ensure high yield of manycore processors, core-level redundancy is often used as an effective approach to improve the reliability of manycore chips. However, when defective cores are replaced by redundant ones, the NoC topology changes. As a result, a fine-tuned application based on timing parameters given by one topology may not meet the expected timing behavior under the new one. To address this issue, we first define a metric that can measure the timing resemblance between different NoC topologies. Based on this metric, we develop a greedy algorithm to reconfigure a defect-tolerant manycore platform and form a unified application specific virtual topology on which the timing variations caused by the reconfiguration are minimized. Our simulation results clearly indicate the effectiveness of the developed algorithm.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles