The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings.
Download PDF

Abstract

We obtain an algorithm that implements a recursive generating function (RGF) for computing the normalising constant in closed, multi-class, product-form queueing networks with multiple, load-independent servers of the same load. It expresses the generating function of a q-class network in terms of the generating functions of a set of (q-1)-class networks. The result for a multi-class network can therefore be deduced hierarchically by finding the normalising constants of a collection of single class networks. A storage management scheme is devised, based on a depth-first recursion tree traversal, to optimise both time and storage requirements and the numerical precision of the resulting RGF algorithm is investigated. In two-class networks, the space and time requirements of RGF are shown to be smaller than for the convolution and RECAL algorithms when the networks contain a moderate to large number of customers. With more classes, RGF gives better performance than the other two methods in many-node networks that are organised in a few groups of several identical nodes.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles