Fourth IEEE International Conference on Data Mining (ICDM'04)
Download PDF

Abstract

We tackle the problem of finding association rules for quantitative data. Whereas most of the previous approaches operate on hyperrectangles, we propose a representation based on half-spaces. Consequently, the left-hand side and right-hand side of an association rule does not contain a conjunction of items or intervals, but a weighted sum of variables tested against a threshold. Since the downward closure property does not hold for such rules, we propose an optimization setting for finding locally optimal rules. A simple gradient descent algorithm optimizes a parameterized score function, where iterations optimizing the first separating hyperplane alternate with iterations optimizing the second. Experiments with two real-world data sets show that the approach finds non-random patterns and scales up well. We therefore propose quantitative association rules based on half-spaces as an interesting new class of patterns with a high potential for applications.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!