Fourth IEEE International Conference on Data Mining (ICDM'04)
Download PDF

Abstract

The goal of dataset editing in instance-based learning is to remove objects from a training set in order to increase the accuracy of a classifier. For example, Wilson editing removes training examples that are misclassified by a nearest neighbor classifier so as to smooth the shape of the resulting decision boundaries. This paper revolves around the use of representative-based clustering algorithms for nearest neighbor dataset editing. We term this approach supervised clustering editing. The main idea is to replace a dataset by a set of cluster prototypes. A novel clustering approach called supervised clustering is introduced for this purpose. Our empirical evaluation using eight UCI datasets shows that both Wilson and supervised clustering editing improve accuracy on more than 50% of the datasets tested. However, supervised clustering editing achieves four times higher compression rates than Wilson editing.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!