Abstract
Genetic-algorithm based techniques have been used to successfully calibrate both analogue and digital VLSI chips. This paper investigates the potential of applying the developed techniques to a generic high-speed digital system, which comprises an analogue-to-digital converter and digital logic integrated on a single chip.It is concluded that evolvable calibration techniques are most likely to be applied to VLSI design where the actual value of a variable is critical rather than the more common instance of the variable having to be greater than a given value or the quantity of interest is the ratio of two matched components. Probably the best example of this is delay. As clock frequencies approach 1GHz, variation of buffer delay and clock skew become increasingly important.