Applications of Computer Vision, IEEE Workshop on
Download PDF

Abstract

In this paper, we address an interesting application of computer vision technique, namely classification of Indian Classical Dance (ICD). With the best of our knowledge, the problem has not been addressed so far in computer vision domain. To deal with this problem, we use a sparse representation based dictionary learning technique. First, we represent each frame of a dance video by a pose descriptor based on histogram of oriented optical flow (HOOF), in a hierarchical manner. The pose basis is learned using an on-line dictionary learning technique. Finally each video is represented sparsely as a dance descriptor by pooling pose descriptor of all the frames. In this work, dance videos are classified using support vector machine (SVM) with intersection kernel. Our contribution here are two folds. First, to address dance classification as a new problem in computer vision and second, to present a new action descriptor to represent a dance video which overcomes the problem of the "Bags-of-Words" model. We have tested our algorithm on our own ICD dataset created from the videos collected from YouTube. An accuracy of 86.67% is achieved on this dataset. Since we have proposed a new action descriptor too, we have tested our algorithm on well known KTH dataset. The performance of the system is comparable to the state-of-the-art.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles